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Abstract
Projection operators associated with antiunitary time-reversal symmetry differ
from the usual orthogonal projections encountered in Hilbert space. Operators
that act in Fock space and project parts of a single-mode state of the
electromagnetic field that can be identified as its quadratures are defined and
their properties are verified by consideration of their action on single-mode
coherent states. The fact that their construction involves, in an essential way,
not one but two parameters is discussed and a weakened form of orthogonal
projection that is specialized to a particular Fock state superposition is identified.
The question of whether or not such orthogonal projections are universal is
raised. In passing, it is noted that the possibility of classifying states as well as
operators according to their time-reversal symmetry properties is relevant to the
analysis of nonlinear wave interactions between waves with rationally related
frequencies.

PACS numbers: 0220, 0370, 1130

1. Introduction

The possibility of representing the electric field in a classical monochromatic light wave in
terms of in-phase and quadrature parts [1] implies that some such representation exists for the
quantized wave. However, the treatment of the quantized wave is problematic because the
identification of parts that are, respectively, even and odd functions of time cannot be achieved
in the same way that even- and odd-parity parts of a wavefunction are arrived at, by orthogonal
projection [2]. In the latter case the space-inversion operation, �, defined by

� : f (x, y, z) �→ f (−x, −y, −z) (1)

which has eigenvalues +1 and −1 is connected with the projection operators Pg and Pu for the
even- and odd-parity parts of a function which can be written as

Pg = 1 + �

2
(2)
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Pu = 1 − �

2
. (3)

The space-inversion symmetrizing projection operators have the following properties:

I = Pg + Pu resolution of identity

� = Pg − Pu spectral resolution of �

P 2
g = Pg

P 2
u = Pu

idempotency

PgPu = PuPg = 0 linear independence of subspaces

and

�Pgf (x, y, z) = Pgf (x, y, z)

�Puf (x, y, z) = −Puf (x, y, z) eigenvalue equations for �〈
Pgf (x, y, z)|Puf (x, y, z)

〉 = 0 orthogonality.

The subjects of this paper are the time-symmetrizing projection operators Pp and Pq that are
related to the time-reversal operation, T , defined by

T :
∑

n

cn|n〉 �→
∑

n

c∗
n|n〉 (4)

where
∑

n cn|n〉 is a Fock space superposition. Pp and Pq project parts of a Fock state in
which the expectation of the electric field is even in time (phase) or odd in time (quadrature)
for some choice of time origin. These projections share some, but not all, of the properties of
orthogonal projections like those for even- and odd-parity parts. The difference between space-
inversion and time-reversal symmetry classifications lies in the fact that, while � is unitary,
T is antiunitary [3]. The definition of satisfactory time-symmetrizing projection operators
follows the recognition that the classical phase and the quantum phase are distinct parameters
which are ultimately to be fitted to the Fock state amplitudes of a particular state.

2. Projection operators for field quadratures

The time-reversal symmetry operation is not unitary. Its operator, T , is antilinear and has no
spectral resolution. However, this does not prevent projection operators from being defined
for the time-symmetric and time-antisymmetric parts of a quantum state that share many of the
properties of the projections for even- and odd-parity described above. The symmetric part of a
state has the property that in it the expectation of an observable of which the observable operator
is time antisymmetric is zero. Similarly, the expectation of a time-symmetric observable in a
time-antisymmetrized state is zero. In the next section projection operators that share only the
following properties of orthogonal projections listed above will be defined:

I = Pp + Pq resolution of identity

P 2
p = Pp

P 2
q = Pq

idempotency

PpPq = PqPp = 0 linear independence of subspaces.
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Although orthogonality and spectral resolution of the symmetry operator are absent there are
additional properties that are significant in applications:

〈Ppf |Ôodd |Ppf 〉 = 0 evenness of Ppf

〈Pqf |Ôeven|Pqf 〉 = 0 oddness of Pqf .

The mathematical basis for the existence of such operators lies in the generalization of the
idea of projection. Since time-reversal, as a symmetry, does not preserve inner products, it is
necessary to look for projections into subspaces of a normed space the properties of which are
invariant under time reversal. This is possible because, although projections in linear spaces
are usually introduced by way of an inner product they are actually more general in nature
[4] and the norm derived from the Hilbert space inner product provides sufficient structure for
them to exist. This norm, unlike the inner product itself, is invariant under time reversal.

3. Coherent states and symmetrizing projections

In order to particularize the general account given above it will be helpful to consider Fock state
superpositions of a type that are quite familiar. Coherent states are Fock state superpositions
of which the amplitudes can be expressed in terms of a single complex parameter α:

|α〉 = exp
−|α|2

2

∑
n

αn

(n!)1/2
|n〉. (5)

If the operator for the electric field at some point of an electromagnetic mode in a cavity of
volume V is [5]:

Ê =
(

h̄ω

2ε0V

)1/2


ε {
â exp(−iωt) + ât exp(iωt)

}
(6)

then the expectation of E at this point is

〈E〉 =
(

h̄ω

2ε0V

)1/2


ε {〈α| â |α〉 exp(−iωt) + 〈α| ât |α〉 exp(iωt)
}

=
(

h̄ω

2ε0V

)1/2


ε {
α exp(−iωt) + α∗ exp(iωt)

}
(7)

and, if α is real, is the even function (2h̄ω/ε0V )1/2
εα cos(ωt).
Similarly, if α is imaginary the expectation value of the field is an odd function of time.

More generally, the expectation value of E in a coherent state with complex parameter α is

〈E〉 =
(

2h̄ω

ε0V

)1/2


ε|α| cos(ωt + arg(α)). (8)

Consider the operators Pp and Pq which act on the Fock state superposition
∑

n cn|n〉 thus

Pp : cn �→ exp i (β + nθ)

sin (β − nπ/2)
Im

{
cn exp

[−in
(
θ + 1

2 π
)]}

(9)

Pq : cn �→ − exp in (θ + π/2)

sin (β − nπ/2)
Im {cn exp [−i (β + nθ)]} (10)

where Im denotes the imaginary part of what follows. When θ = arg α, Pp fixes [4] a coherent
state with parameter α in the sense that

Pp {exp(iβ)|α〉} = exp(iβ)|α〉 (11)
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whilst Pq fixes a coherent state whose parameter is α exp(iπ/2)

Pq

∣∣∣exp
(

i
π

2

)
α
〉
=

∣∣∣exp
(

i
π

2

)
α
〉
. (12)

These projection operators, which satisfy the conditions identified in the previous section, meet
the requirement of projecting quantum states into parts for which the expectation values of the
field are even and odd in time with respect to some choice of time origin. Thus, when the time
origin is chosen in such a way that

Ê =
(

h̄ω

2ε0V

)1/2


ε {
â exp [−iω(t − t0)] + ât exp [iω(t − t0]

}
(13)

and

〈E〉 =
(

2h̄ω

ε0V

)1/2


ε cos
[
ω(t − t0) + arg(α)

]
(14)

then the condition ωt0 = arg(α) ensures that the expectation value of E is an even function of
time.

Freedom to choose the time origin means that a single-mode coherent state can be variously
expressed as an even in time or an odd in time state according to the choice of t0 as indicated in
the argument leading up to equation (14). This freedom is removed when multimode coherent
states with component fields that are rationally related in frequency are considered such as, for
example, in nonlinear optics. This is because, in a multimode coherent state |{αi}〉, there is in
general no way of choosing t0 to satisfy the set of equations

ωit0 = arg(αi) (15)

which generalize the earlier condition for two or more modes simultaneously. In nonlinear
optics where the evenness or oddness of the field superpositions has a definite influence on the
phenomena that are observed [6]. For example, it may be shown by consideration of coupled
mode equations that phase-matched fundamental and second harmonic waves in a nonlinear
medium exchange energy only when present as a sinusoidal (odd in time) superposition.

4. Retrieval of orthogonality

The inner product, S = 〈Ppψ |Pqψ〉, of Ppψ and Pqψ , where ψ = ∑
n cn|n〉, has real and

imaginary parts:

Re(S) =
∑

n

|cn|2 cot
(
β − nπ

2

)
sin

[
arg(cn) − nθ − nπ

2

]
sin

[
arg(cn) − nθ − β

]
(16)

Im(S) =
∑

n

|cn|2 sin
[
arg(cn) − nθ − nπ

2

]
sin

[
arg(cn) − nθ − β

]
. (17)

It may happen that for some choice of Pp and Pq , parametrized by θ and β, Re(S) and Im(S)

vanish simultaneously. In this situation Pp and Pq are projections that are orthogonal with
respect to the state ψ . The notion of orthogonality with respect to a particular data set is
a familiar one in numerical analysis [7] but does not appear to have been imported into the
quantum formalism before.

The question of the existence and uniqueness of simultaneous solutions of Re(S) = 0 and
Im(S) = 0 naturally arises but has not been answered here. Instead, it has been established that
for the particular set of amplitudes {cn} shown in table 1 the parameter values θ = 2.3560 rad
and β = 0.3546 rad render the projections orthogonal.
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Table 1. Amplitude used to investigate simultaneous solutions of Re(S) = 0 and Im(S) = 0 with
Re(S) and Im(S) given by equations (16) and (17).

n |cn| arg(cn) (rad)

0 0.2330 1.0409
1 0.4085 1.1190
2 0.2574 1.3691
3 0.3140 0.3834
4 0.5123 0.6046
5 0.4346 0.9281
6 0.2656 0.9284
7 0.2070 0.6815
8 0.1725 0.7194
9 0.1130 0.8358

10 0.0651 0.8268
11 0.0397 0.7546
12 0.0241 0.7635
13 0.0133 0.8019
14 0.0069 0.7982
15 0.0036 0.7759
16 0.0018 0.7784
17 0.0009 0.7907
18 0.0004 0.7894
19 0.0002 0.7824
20 0.0001 0.7832

The importance of the existence of orthogonal projections for a particular Fock space
superposition lies in the fact that the metrical significance of the amplitudes in the projected
components is retained as indicated by the equation

〈ψ |ψ〉 = 〈Ppψ |Ppψ〉 + 〈Pqψ |Pqψ〉 (18)

just as is normally the case for quantum mechanical projections. This seems sufficient reason to
regard both θ and β as significant parameters in the quadrature resolution exercise. Normally,
the fact that states are represented by rays rather than vectors, means that orthogonal projection
is achieved with some freedom of choice of the phase [8]. This is not the case here.

5. Conclusion

Exploration of the quantum mechanical basis for describing the electric field in a light wave as a
sinusoidal or cosinusoidal superposition of fundamental and harmonics forces a generalization
of the projections that are normally encountered in Hilbert space. The identification of two
real parameters which together define a projection shows that, in quantum mechanics, the
resolution of field quadratures entails more than just a choice of the origin of time.

References

[1] Louisell W H 1963 Amplitude and phase uncertainty relations Phys. Lett. 7 60–1
[2] Elliott J P and Dawber P G 1979 Symmetry in Physics vol 2 (London: Macmillan) p 369
[3] Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (New York:

Academic) p 325
[4] Kantorovich L V and Akilov G P 1982 Functional Analysis 2nd edn (Oxford: Pergamon) p 90, 147
[5] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon) p 13



622 R J Potton

[6] Baranova N B and Zel’dovich B Ya 1991 Physical effects in optical fields with nonzero average cube 〈E3〉 = 0
J. Opt. Soc. Am. B 8 27–32

[7] Guest P G 1961 Numerical Methods of Curve Fitting (Cambridge: Cambridge University Press) p 163
[8] Altmann S L 1979 Double groups and projective representations 1: general theory Mol. Phys. 38 489–511


